当前位置:首页 > 教学资料 > 说课稿

高二数学说课稿

时间:2024-10-11 23:27:11
高二数学说课稿[优选]

高二数学说课稿[优选]

作为一名专为他人授业解惑的人民教师,就不得不需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。说课稿应该怎么写才好呢?以下是小编为大家收集的高二数学说课稿,欢迎大家分享。

高二数学说课稿1

各位领导,各位老师:

我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1、2、1节。

一、教材结构与内容简析

本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。

三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合等数学思想方法。

二、教学重点、难点、关键

教学重点:任意角的三角函数的定义,三角函数的符号规律。

教学难点:任意角的三角函数概念的建构过程。

教学关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。

三、学情分析

学生已经掌握的内容及学生学习能力

1、学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、学生的运算能力较差。

3、部分同学对数学的学习有相当的兴趣和积极性。

4、在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。

四、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:

1、基础知识目标:使学生正确理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;

2、能力训练目标:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力。

3、情感目标:通过学习,渗透数形结合和类比的数学思想,培养学生良好的思维习惯。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

五、教学理念和方法

教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学教法,在课堂结构上,设计了①创设情境——揭示课题②推广认知——形成概念③巩固新知——探求规律④总结反思——提高认识⑤任务后延——自主探究五个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:

六、教学程序及设想

总体来说,由旧及新,由易及难,逐步加强,逐步推进,给定定义后通过应用定义又逐步发现新知识,拓展、完善定义、

先由初中的直角三角形中锐角三角函数的定义,过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义。

(一)创设情境——揭示课题

问题1:在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?

【设计意图】学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。

问题2:角的概念推广之后,这样的三角函数定义还适用吗?

问题3:若将锐角放入直角坐标系中,你能用角的终边上的点的`坐标来表示锐角三角函数吗?

留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。

能表示吗?怎样表示?针对刚才的问题点名让学生回答。用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于前面已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。

【设计意图】

从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。

教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

师生共做(学生口述,教师板书图形和比值)。

问题4:对于确定的角,这三个比值是否与P在

的终边上的位置有关?为什么?

先让学生想象思考,作出主观判断,再引导学生观察右图,

联系相似三角形知识,探索发现:对于锐角α的每一个确定值,

六个比值都是确定的,不会随P在终边上的移动而变化。

得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化、所以,六个比值分别是以角α为自变量、以比值为函数值的函数。

(二)推广认知——形成概念

将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的同学起到了很好的指导作用。

教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。

(关于值域,到后面再学习)。

【设计意图】定义域是函数三要素之一,研究函数必须明确定 ……此处隐藏29274个字……就及其数学美,激发学生的民族自豪感.

2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的.观察能力和归纳推理能力.

3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.

4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.

教法:问题引导、合作探究.。

学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.

1.展示成果话杨辉。

课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.

(1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.

(2)各小组展示探究与发现的成果——“杨辉三角”包含的一些规律.

【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.

2.感知规律悟性质。

通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第行就是展开式的二项式系数,展开式的二项式系数具有杨辉三角同行中的规律——对称性和增减性与最大值.

【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.

3.联系旧知探新知。

【问题提出】怎样证明展开式的二项式系数具有对称性和增减性与最大值呢?

(2)画出和7时函数的图象,并观察分析他们是否具有对称性和增减性与最大值.

(3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.

对称性:与首末两端“等距离”的两个二项式系数相等..。

【设计意图】教师引导学生用函数思想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流,说明或证明二项式系数的对称性和增减性与最大值,提高学生合作意识.

4.合作交流议方法。

【继续探究】问题:展开式的各二项式系数的和是多少?

探究:(1)计算展开式的二项式系数的和(=1,2,3,4,5,6).

(2)猜想展开式的二项式系数的和.

(3)怎样证明你猜想的结论成立?

赋值法:已知,令,则.。

这就是说,的展开式的各个二项式系数的和等于.。

元集合子集的个数(两个计数原理).

分类计数原理:

分步计数原理:个2相乘,即.。

所以.。

【问题拓展】你能求吗?

在展开式中,令,则得,即,所以,在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.

【设计意图】通过学生归纳猜想各二项式系数的和,引导学生验证猜想结论是否正确;同时为了突破利用赋值法证明二项式系数性质的难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮,既加深学生对前后知识的内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应.

5.反馈升华拨思路。

练1.的展开式中的第四项和第八项的二项式系数相等,则等于.

练2.的展开式中前项的二项式系数逐渐增大,后半部分逐渐减小,二项式系数取得最大值的是第项.

练3.已知,求:

(1);(2).

6.悬念小结再求索。

【课堂延伸】今天同学们展示了一些杨辉三角的规律,但是作为我国古代数学重要成就之一的杨辉三角还有更多有趣的规律,相信大家一定有极高的热情和严谨的态度去探究与发现杨辉三角的奥妙之处.

【课外活动】(研究性学习)。

活动主题:杨辉三角中的奥妙.

活动目标:探究与发现杨辉三角中的更多奥妙.

活动方案步骤:查阅资料,收集信息;独立思考,发现规律,猜想证明;合作探究,小组讨论,形成初步结论;与指导老师及其他小组成员交流展示;撰写研究性学习报告.

【设计意图】通过课堂的整理、总结与反思,使学生更好的掌握主干知识,体会探究过程中渗透的数学思想方法,再次感受我国古代数学成就,激励自己努力学习.“杨辉三角”还有很多有趣的规律,让学生带着问题走进课堂,带着疑问离开教室,培养学生自主研修的习惯,提高学生探究问题、解决问题的能力.设计研究性学习活动,诱发学生创造性的想象和推理.同时教会学生如何开展研究性学习.

导数是微积分的核心概念之一,它为研究函数提供了有效的方法。在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵。这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念。通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。

2、教学的重点、难点、关键。

教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。

教学难点:理解导数的几何意义的本质内涵。

1)从割线到切线的过程中采用的逼近方法;

2)理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等。

根据新课程标准的要求、学生的认知水平,确定教学目标如下:

1、知识与技能:

通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

2、过程与方法:

经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解。

通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

3、情感态度与价值观:

对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了自主、合作、探究的学习方法。

教具:几何画板、幻灯片。

《高二数学说课稿[优选].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式